Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 286
Filtrar
1.
Sci Total Environ ; 927: 172170, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38575034

RESUMO

Soil heavy metal contamination is an essential challenge in ecological and environmental management, especially for acidic soils. Microbially induced carbonate precipitation (MICP) is an effective and environmentally friendly remediation technology for heavy metal contaminated sites, and one of the key factors for its realization lies in the microorganisms. In this study, Lysinibacillus capsici TSBLM was isolated from heavy metal contaminated soil around a gold mine, and inferred to be a novel ureolytic bacteria after phylogenomic inference and genome characterization. The urease of L. capsici TSBLM was analyzed by genetic analysis and molecular docking, and further applied this bacteria to the remediation of Cu and Pb in solution and acidic soils to investigate its biomineralization mechanism and practical application. The results revealed L. capsici TSBLM possessed a comprehensive urease gene cluster ureABCEFGD, and the encoded urease docked with urea at the lowest binding energy site (ΔG = -3.43 kcal/mol) connected to three amino acids threonine, aspartic, and alanine. The urease of L. capsici TSBLM is synthesized intracellularly but mainly functions extracellularly. L. capsici TSBLM removes Cu/Pb from the solution by generating heavy metal carbonates or co-precipitating with CaCO3 vaterite. For acidic heavy metal-contaminated soil, the carbonate-bound states of Cu and Pb increased significantly from 7 % to 16 % and from 23 % to 35 % after 30 days by L. capsici TSBLM. Soil pH improved additionally. L. capsici TSBLM maintained the dominant status in the remediated soil after 30 days, demonstrating good environmental adaptability and curing persistence. The results provided new strain resources and practical application references for the remediation of acidic heavy metal contaminated soil based on MICP.


Assuntos
Bacillaceae , Biodegradação Ambiental , Metais Pesados , Microbiologia do Solo , Poluentes do Solo , Poluentes do Solo/metabolismo , Bacillaceae/genética , Bacillaceae/enzimologia , Urease/metabolismo , Solo/química , Recuperação e Remediação Ambiental/métodos , Filogenia , Mineração , Genoma Bacteriano
2.
Braz J Microbiol ; 54(3): 1935-1942, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37581711

RESUMO

A new Lysinibacillus fusiformis strain with abundant laccase activity was isolated from soil under forest rotted leaf and identified as L. fusiformis W11 based on its 16S rRNA gene sequence and physiological characteristics. The laccase LfuLac was purified and characterized. The optimum temperature and pH of LfuLac on guaiacol were 45 °C and pH 9, respectively. LfuLac kept 78%, 88%, 92%, 74%, and 47% of activity at pH 7-11, respectively, suggesting the alkali resistance of the enzyme. The effects of various metal ions on LfuLac showed that Cu2+, Mg2+, and Na+ were beneficial to laccase activity and 10 mM Cu2+ increased the activity of LfuLac to 216%. LfuLac showed about 90% activity at 5% organic solvents and more than 60% activity at 20%, indicating its resistance to organic solvents. In addition, LfuLac decolorized different kinds of dyes. This study enriched our knowledge about laccase from L. fusiformis W11 and its potential industrial applications.


Assuntos
Bacillaceae , Corantes , Lacase , Álcalis , Corantes/química , Concentração de Íons de Hidrogênio , Lacase/química , Lacase/genética , Lacase/isolamento & purificação , RNA Ribossômico 16S/genética , Solventes , Temperatura , Bacillaceae/enzimologia
3.
Angew Chem Int Ed Engl ; 61(10): e202114809, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34935242

RESUMO

The combination of biocatalysis and transition-metal catalysis can complement synthetic gaps only in a chemical or biological process. However, the intrinsic mutual deactivation between enzymatic and chemical species is a significant challenge in a single operation. To address the above issue, we developed an encapsulated Au/carbene combined with a free amine dehydrogenase as a co-catalyst system that enables an efficient hydration/amination enantioselective cascade process to be accomplished. The mechanistic investigation discloses dual catalysis comprised of alkyne hydration, followed by a reductive amination process.


Assuntos
Aminas/síntese química , Ouro/química , Metano/análogos & derivados , Oxirredutases/química , Aminação , Aminas/química , Aminas/metabolismo , Bacillaceae/enzimologia , Ouro/metabolismo , Metano/química , Metano/metabolismo , Modelos Moleculares , Conformação Molecular , Oxirredutases/metabolismo , Água/química , Água/metabolismo
4.
J Microbiol Biotechnol ; 32(1): 99-109, 2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-34818664

RESUMO

This study is the first report on production and characterization of the enzyme from an Ornithinibacillus species. A 4.2-fold increase in the extracellular protease (called L9T) production from Ornithinibacillus caprae L9T was achieved through the one-factor-at-a-time approach and response surface methodological optimization. L9T protease exhibited a unique protein band with a mass of 25.9 kDa upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis. This novel protease was active over a range of pH (4-13), temperatures (30-80°C) and salt concentrations (0-220 g/l), with the maximal activity observed at pH 7, 70°C and 20 g/l NaCl. Proteolytic activity was upgraded in the presence of Ag+, Ca2+ and Sr2+, but was totally suppressed by 5 mM phenylmethylsulfonyl fluoride, which suggests that this enzyme belongs to the serine protease family. L9T protease was resistant to certain common organic solvents and surfactants; particularly, 5 mM Tween 20 and Tween 80 improved the activity by 63 and 15%, respectively. More importantly, L9T protease was found to be effective in dehairing of goatskins, cowhides and rabbit-skins without damaging the collagen fibers. These properties confirm the feasibility of L9T protease in industrial applications, especially in leather processing.


Assuntos
Bacillaceae/enzimologia , Serina Proteases/biossíntese , Serina Proteases/química , Animais , Bacillaceae/genética , Detergentes/farmacologia , Eletroforese em Gel de Poliacrilamida , Endopeptidases/biossíntese , Endopeptidases/química , Estabilidade Enzimática , Cabras , Cabelo/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Cinética , Proteólise , Coelhos , Serina Proteases/efeitos dos fármacos , Serina Proteases/genética , Pele/efeitos dos fármacos , Solventes/farmacologia , Especificidade por Substrato , Tensoativos/farmacologia , Temperatura
5.
PLoS One ; 16(8): e0256639, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34437618

RESUMO

Pontibacillus sp. ALD_SL1 and Psychroflexus sp. ALD_RP9 are two novel bacterial isolates from mangrove sediment and a moderately hypersaline pool on the Aldabra Atoll, Seychelles. The isolates represent two novel species were characterised physiologically and genomically. Pontibacillus sp. ALD_SL1 is a facultatively anaerobic yellow, motile, rod-shaped Gram-positive, which grows optimally at a NaCl concentration of 11%, pH 7 and 28°C. It is the third facultatively anaerobic member of the genus Pontibacillus. The organism gains energy through the fermentation of pyruvate to acetate and ethanol under anaerobic conditions. The genome is the first among Pontibacillus that harbours a megaplasmid. Psychroflexus sp. ALD_RP9 is an aerobic heterotroph, which can generate energy by employing bacteriorhodopsins. It forms Gram-negative, orange, non-motile rods. The strain grows optimally at NaCl concentrations of 10%, pH 6.5-8 and 20°C. The Psychroflexus isolate tolerated pH conditions up to 10.5, which is the highest pH tolerance currently recorded for the genus. Psychroflexus sp. ALD_RP9 taxonomically belongs to the clade with the smallest genomes. Both isolates show extensive adaptations to their saline environments yet utilise different mechanisms to ensure survival.


Assuntos
Bacillaceae/isolamento & purificação , Flavobacteriaceae/isolamento & purificação , Sedimentos Geológicos/microbiologia , Bacillaceae/enzimologia , Bacillaceae/crescimento & desenvolvimento , Bacillaceae/ultraestrutura , Flavobacteriaceae/enzimologia , Flavobacteriaceae/crescimento & desenvolvimento , Flavobacteriaceae/ultraestrutura , Genoma Bacteriano , Cinética , Filogenia , Seicheles , Microbiologia da Água
6.
Biochem Biophys Res Commun ; 575: 8-13, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34454178

RESUMO

Nitrile hydratase (NHase) is able to bio-transform nitriles into amides. As nitrile hydration being an exothermic reaction, a NHase with high activity and stability is needed for amide production. However, the widespread use of NHase for amide bio-production is limited by an activity-stability trade-off. In this study, through the combination of substrate access tunnel calculation, residue conservative analysis and site-saturation mutagenesis, a residue located at the substrate access tunnel entrance of the thermophilic NHase from extremophile Caldalkalibacillus thermarum TA2. A1, ßLeu48, was semi-rationally identified as a potential gating residue that directs the enzymatic activity toward various pyridine and pyrazine nitriles. The specific activity of the corresponding mutant ßL48H towards 3-cyanopyridine, 2-cyanopyridine and cyanopyrazine were 2.4-fold, 2.8-fold and 3.1-fold higher than that of its parent enzyme, showing a great potential in the industrial production of high-value pyridine and pyrazine carboxamides. Further structural analysis demonstrated that the ßHis48 could form a long-lasting hydrogen bond with αGlu166, which contributes to the expansion of the entrance of substrate access tunnel and accelerate substrate migration.


Assuntos
Bacillaceae/enzimologia , Hidroliases/metabolismo , Nitrilas/metabolismo , Piridinas/metabolismo , Proteínas Recombinantes/metabolismo , Sítios de Ligação , Hidroliases/química , Hidroliases/isolamento & purificação , Ligação de Hidrogênio , Modelos Moleculares , Mutagênese Sítio-Dirigida/métodos , Nitrilas/química , Elementos Estruturais de Proteínas , Piridinas/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Relação Estrutura-Atividade
7.
World J Microbiol Biotechnol ; 37(9): 147, 2021 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-34363544

RESUMO

Thalassobacillus is a moderately halophilic genus that has been isolated from several sites worldwide, such as hypersaline lakes, saline soils, salt flats, and volcanic mud. Halophilic bacteria have provided functional stable biomolecules in harsh conditions for industrial purposes. Despite its potential biotechnological applications, Thalassobacillus has not been fully characterized yet. This review describes the Thalassobacillus genus, with the few species reported, pointing out its possible applications in enzymes (amylases, cellulases, xylanases, and others), biosurfactants, bioactive compounds, biofuels production, bioremediation, and plant growth promotion. The Thalassobacillus genus represents a little-explored biological resource but with a high potential.


Assuntos
Bacillaceae/enzimologia , Proteínas de Bactérias/farmacologia , Bacillaceae/isolamento & purificação , Biotecnologia , Microbiologia Ambiental
8.
Biosci Biotechnol Biochem ; 85(8): 1830-1838, 2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34021568

RESUMO

Information about the inulosucrase of nonlactic acid bacteria is scarce. We found a gene encoding inulosucrase (inuBK) in the genome of the Gram-positive bacterium Alkalihalobacillus krulwichiae JCM 11691. The inuBK open reading frame encoded a protein comprising 456 amino acids. We expressed His-tagged InuBK in culture medium using a Brevibacillus system. The optimal pH and temperature of purified InuBK were 7.0-9.0 and 50-55 °C, respectively. The findings of high-performance anion-exchange chromatography, nuclear magnetic resonance spectroscopy, and high-performance size-exclusion chromatography with multiangle laser light scattering showed that the polysaccharide produced by InuBK was an inulin with a molecular weight of 3806, a polydispersity index (PI) of 1.047, and fructosyl chain lengths with 3-27 degrees of polymerization. The size of InuBK was smaller than commercial inulins, and the PI of the inulin that it produced was lower.


Assuntos
Bacillaceae/enzimologia , Hexosiltransferases/metabolismo , Bacillaceae/genética , Cromatografia Líquida de Alta Pressão/métodos , Clonagem Molecular , Meios de Cultura , Genes Bacterianos , Hexosiltransferases/genética , Hexosiltransferases/isolamento & purificação , Inulina/biossíntese , Espectroscopia de Ressonância Magnética/métodos , Peso Molecular , Filogenia , Temperatura
9.
Carbohydr Polym ; 262: 117968, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33838833

RESUMO

Enzymatically rearranging α-1,4 and α-1,6 glycosidic bonds in starch is a green approach to regulating its digestibility. A two-step modification process successively catalyzed by 1,4-α-glucan branching enzymes (GBEs) from Rhodothermus obamensi STB05 (Ro-GBE) and Geobacillus thermoglucosidans STB02 (Gt-GBE) was investigated as a strategy to reduce the digestibility of corn starch. This dual GBE modification process caused a reduction of 25.8 % in rapidly digestible starch fraction in corn starch, which were more effective than single GBE-catalyzed modification with the same duration. Structural analysis indicated that the dual GBE modified product contained higher branching density, more abundant short branches, and shorter external chains than those in single GBE-modified product. These results demonstrated that a moderate Ro-GBE treatment prior to starch gelatinization caused several suitable alterations in starch molecules, which promoted the transglycosylation efficiency of the following Gt-GBE treatment. This dual GBE-catalyzed modification process offered an efficient strategy for regulating starch digestibility.


Assuntos
Enzima Ramificadora de 1,4-alfa-Glucana/química , Glicosídeos/química , Amido/química , Enzima Ramificadora de 1,4-alfa-Glucana/metabolismo , Amilose/química , Amilose/metabolismo , Bacillaceae/enzimologia , Digestão , Glicosídeos/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Estrutura Molecular , Rhodothermus/enzimologia , Amido/metabolismo
10.
Int J Mol Sci ; 22(3)2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33540582

RESUMO

Methanol dehydrogenase (Mdh), is a crucial enzyme for utilizing methane and methanol as carbon and energy sources in methylotrophy and synthetic methylotrophy. Engineering of Mdh, especially NAD-dependent Mdh, has thus been actively investigated to enhance methanol conversion. However, its poor catalytic activity and low methanol affinity limit its wider application. In this study, we applied a transcriptional factor-based biosensor for the direct evolution of Mdh from Lysinibacillus xylanilyticus (Lxmdh), which has a relatively high turnover rate and low KM value compared to other wild-type NAD-dependent Mdhs. A random mutant library of Lxmdh was constructed in Escherichia coli and was screened using formaldehyde-detectable biosensors by incubation with low methanol concentrations. Positive clones showing higher fluorescence were selected by fluorescence-activated cell sorting (FACS) system, and their catalytic activities toward methanol were evaluated. The successfully isolated mutants E396V, K318N, and K46E showed high activity, particularly at very low methanol concentrations. In kinetic analysis, mutant E396V, K318N, and K46E had superior methanol conversion efficiency, with 79-, 23-, and 3-fold improvements compared to the wild-type, respectively. These mutant enzymes could thus be useful for engineering synthetic methylotrophy and for enhancing methanol conversion to various useful products.


Assuntos
Oxirredutases do Álcool/genética , Bacillaceae/enzimologia , Mutação , Oxirredutases do Álcool/metabolismo , Bacillaceae/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Técnicas Biossensoriais , Cinética , Metanol/metabolismo
11.
N Biotechnol ; 62: 49-56, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-33486119

RESUMO

The coordinated action of carbohydrate-active enzymes has mainly been evaluated for the purpose of complete saccharification of plant biomass (lignocellulose) to sugars. By contrast, the coordinated action of accessory hemicellulases on xylan debranching and recovery is less well characterized. Here, the activity of two family GH115 α-glucuronidases (SdeAgu115A from Saccharophagus degradans, and AxyAgu115A from Amphibacillus xylanus) on spruce arabinoglucuronoxylan (AGX) was evaluated in combination with an α-arabinofuranosidase from families GH51 (AniAbf51A, aka E-AFASE from Aspergillus niger) and GH62 (SthAbf62A from Streptomyces thermoviolaceus). The α-arabinofuranosidases boosted (methyl)-glucuronic acid release by SdeAgu115A by approximately 50 % and 30 %, respectively. The impact of the α-arabinofuranosidases on AxyAgu115A activity was comparatively low, motivating its structural characterization. The crystal structure of AxyAgu115A revealed increased length and flexibility of the active site loop compared to SdeAgu115A. This structural difference could explain the ability of AxyAgu115A to accommodate more highly substituted arabinoglucuronoxylan, and inform enzyme selections for improved AGX recovery and use.


Assuntos
Bacillaceae/enzimologia , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/metabolismo , Modelos Moleculares
12.
Int J Biol Macromol ; 166: 557-566, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33186653

RESUMO

In this study, serine alkaline protease from halotolerant alkaliphilic Salipaludibacillus agaradhaerens strain AK-R was purified and immobilized onto double mesoporous core-shell silica (DMCSS) nanospheres. Covalent immobilization of AK-R protease onto activated DMCSS-NH2 nanospheres was more efficient than physical adsorption and was applied in further studies. DMCSS-NH2 nanospheres showed high loading capacity of 103.8 µg protein/mg nanospheres. Relative to free AK-R protease, the immobilized enzyme exhibited shifts in the optimal temperature and pH from 60 to 65 °C and pH 10.0 to 10.5, respectively. While the soluble enzyme retained 47.2% and 9.1% of its activity after treatment for 1 h at 50 and 60 °C, the immobilized protease maintained 87.7% and 48.3%, respectively. After treatment for 2 h at pH 5 and 13, the immobilized protease maintained 73.6% and 53.4% of its activity, whereas the soluble enzyme retained 32.9% and 1.4%, respectively. Furthermore, the immobilized AK-R protease showed significant improvement of enzyme stability in high concentration of NaCl, organic solvents, surfactants, and commercial detergents. In addition, the immobilized protease exhibited a very good operational stability, retaining 79.8% of its activity after ten cycles. The results clearly suggest that the developed immobilized protease system is a promising nanobiocatalyst for various protease applications.


Assuntos
Bacillaceae/enzimologia , Proteínas de Bactérias/metabolismo , Endopeptidases/metabolismo , Enzimas Imobilizadas/metabolismo , Nanosferas/química , Biocatálise/efeitos dos fármacos , Detergentes/farmacologia , Estabilidade Enzimática/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Nanosferas/ultraestrutura , Oxidantes/farmacologia , Porosidade , Salinidade , Dióxido de Silício/química , Solventes/química , Tensoativos/farmacologia , Temperatura
13.
Prep Biochem Biotechnol ; 51(1): 28-34, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32633612

RESUMO

Organic solvent-tolerant proteases have many applications in the synthesis of peptides. In this study, we have developed a low-cost and convenient method to produce highly concentrated organic solvent-tolerant protease. Organic solvent tolerant protease (OSP) gene from Bacillus sphaericus DS11 was cloned and expressed in Bacillus subtilis WB800. The optimum pH of the recombinant protease was 9.0. The optimum temperature of the recombinant protease was 40 °C. The recombinant protease was purified by ethanol with the yield of (87.33%). The yield of OSP enriched by ethanol was higher than that of by Ni-chelating affinity chromatography, which indicated that precipitation of the recombinant OSP with ethanol is a relatively low-cost and fast method for organic solvent -tolerant protease preparation. These results showed that this enzyme could be very useful in different industrial applications.


Assuntos
Bacillaceae/enzimologia , Bacillaceae/genética , Bacillus subtilis/enzimologia , Bacillus subtilis/genética , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/química , Peptídeo Hidrolases/biossíntese , Peptídeo Hidrolases/química , Solventes/química , Proteínas de Bactérias/genética , Precipitação Química , Detergentes/química , Estabilidade Enzimática , Etanol/química , Genes Bacterianos , Concentração de Íons de Hidrogênio , Peptídeo Hidrolases/genética , Proteínas Recombinantes/isolamento & purificação , Temperatura
14.
Bioprocess Biosyst Eng ; 44(2): 225-234, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32888092

RESUMO

Extracellular proteolytic extracts from the haloalkalitolerant strain Alkalihalobacillus patagoniensis PAT 05T have proved highly efficient to reduce wool felting, as part of an ecofriendly treatment suitable for organic wool. In the present study, we identified the extracellular proteases produced by PAT 05T and we optimized its growth conditions for protease production through statistical methods. A total of 191 proteins were identified in PAT 05T culture supernatants through mass spectrometry analysis. Three of the 6 detected extracellular proteases belonged to the serine-endopeptidase family S8 (EC 3.4.21); two of them showed 86.3 and 67.9% identity with an alkaline protease from Bacillus alcalophilus and another one showed 50.4% identity with Bacillopeptidase F. The other 3 proteases exhibited 55.3, 49.4 and 61.1% identity with D-alanyl-D-alanine carboxypeptidase DacF, D-alanyl-D-alanine carboxypeptidase DacC and endopeptidase LytE, respectively. Using a Fractional Factorial Design followed by a Central Composite Design optimization, a twofold increase in protease production was reached. NaCl concentration was the most influential factor on protease production. The usefulness of PAT 05T extracellular proteolytic extracts to reduce wool felting was possible associated with the activity of the serine-endopeptidases closely related to highly alkaline keratinolytic proteases. The other identified proteases could cooperate, improving protein hydrolysis. This study provided valuable information for the exploitation of PAT 05T proteases which have potential for the valorization of organic wool as well as for other industrial applications.


Assuntos
Bacillaceae/enzimologia , Proteínas de Bactérias , Peptídeo Hidrolases , Proteômica , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Peptídeo Hidrolases/biossíntese , Peptídeo Hidrolases/química , Peptídeo Hidrolases/isolamento & purificação
15.
Subcell Biochem ; 96: 355-372, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33252736

RESUMO

Thermostability is a key factor in the industrial and clinical application of enzymes, and understanding mechanisms of thermostability is valuable for molecular biology and enzyme engineering. In this chapter, we focus on the thermostability of leucine dehydrogenase (LDH, EC 1.4.1.9), an amino acid-metabolizing enzyme that is an NAD+-dependent oxidoreductase which catalyzes the deamination of branched-chain l-amino acids (BCAAs). LDH from Geobacillus stearothermophilus (GstLDH) is a highly thermostable enzyme that has already been applied to quantify the concentration of BCAAs in biological specimens. However, the molecular mechanism of its thermostability had been unknown because no high-resolution structure was available. Here, we discuss the thermostability of GstLDH on the basis of its structure determined by cryo-electron microscopy. Sequence comparison with other structurally characterized LDHs (from Lysinibacillus sphaericus and Sporosarcina psychrophila) indicated that non-conserved residues in GstLDH, including Ala94, Tyr127, and the C-terminal region, are crucial for oligomeric stability through intermolecular interactions between protomers. Furthermore, NAD+ binding to GstLDH increased the thermostability of the enzyme as additional intermolecular interactions formed on cofactor binding. This knowledge is important for further applications and development of amino acid metabolizing enzymes in industrial and clinical fields.


Assuntos
Leucina Desidrogenase/química , Leucina Desidrogenase/metabolismo , Bacillaceae/enzimologia , Microscopia Crioeletrônica , Estabilidade Enzimática , Geobacillus stearothermophilus/enzimologia , Leucina Desidrogenase/ultraestrutura , Sporosarcina/enzimologia
16.
FEBS Lett ; 595(3): 351-359, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33277689

RESUMO

Glucuronoxylans represent a significant fraction of woody biomass, and its decomposition is complicated by the presence of lignin-carbohydrate complexes (LCCs). Herein, LCCs from birchwood were used to investigate the potential coordinated action of a glucuronoyl esterase (TtCE15A) and two α-glucuronidases (SdeAgu115A and AxyAgu115A). When supplementing α-glucuronidase with equimolar quantities of TtCE15A, total MeGlcpA released after 72 h by SdeAgu115A and AxyAgu115A increased from 52% to 67%, and 61% to 95%, respectively. Based on the combined TtCE15A and AxyAgu115A activities, ~ 34% of MeGlcpA in the extracted birchwood glucuronoxylan was occupied as LCCs. Notably, insoluble LCC fractions reduced soluble α-glucuronidase concentrations by up to 70%, whereas reduction in soluble TtCE15A was less than 30%, indicating different tendencies to adsorb onto the LCC substrate.


Assuntos
Proteínas de Bactérias/metabolismo , Esterases/metabolismo , Glicosídeo Hidrolases/metabolismo , Lignina/metabolismo , Polissacarídeos/metabolismo , Xilanos/metabolismo , Bacillaceae/química , Bacillaceae/enzimologia , Proteínas de Bactérias/genética , Betula/química , Biomassa , Ensaios Enzimáticos , Esterases/genética , Gammaproteobacteria/química , Gammaproteobacteria/enzimologia , Expressão Gênica , Ácido Glucurônico/metabolismo , Glicosídeo Hidrolases/genética , Hidrólise , Cinética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Madeira/química
17.
J Sci Food Agric ; 101(8): 3308-3318, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33222223

RESUMO

BACKGROUND: Gracilibacillus alcaliphilus SK51.001, a strain that produces ß-CGTase (ß-cyclodextrin glucanotransferase) (EC 2.4.1.19), was screened and isolated from Sudanese soil. The objective of this study was to sequence and characterize the ß-CGTase gene from G. alcaliphilus SK51.001. RESULTS: According to 16S rRNA analysis of the strain and its morphological shape, it was identified as G. alcaliphilus. The ß-CGTase gene was successfully cloned, sequenced, and expressed in Escherichia coli BL21. This gene showed 706 amino acid residues including 33 amino acids as a signal peptide. The active site residues of G. alcaliphilus SK51.001CGTase were described using enzyme modeling and docking with the products. The estimated molecular mass of G. alcaliphilus SK51.001CGTase was approximately 74 kDa as determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), and the evaluation of the gel filtration showed approximately 85 kDa, which means G. alcaliphilus SK51.001CGTase is a monomer. The optimum temperature and pH of G. alcaliphilus SK51.001CGTase were 60 °C and 7.0 respectively. Gracilibacillus alcaliphilus SK51.001CGTase was comparatively stable at a pH levels between 6.0 and 9.0 and temperatures of 30-50 °C. The activity of G. alcaliphilus SK51.001CGTase was increased by Ni2+ , and Co2+ but inhibited by Al3+ and Fe3+ . The kinetic parameters of Km and Vmax were 2068.52 µg mL-1 and 0.13 µmol mL-1  min-1 , respectively. CONCLUSION: Gracilibacillus alcaliphilus SK51.001CGTase could hydrolyze soluble starch into α-, ß-, and γ-cyclodextrin in a ratio of 2: 83: 15% respectively. This high ratio production of ß-CD could allow the enzyme to be used in ß-CD production. © 2020 Society of Chemical Industry.


Assuntos
Bacillaceae/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Glucosiltransferases/química , Glucosiltransferases/genética , Bacillaceae/química , Bacillaceae/genética , Bacillaceae/isolamento & purificação , Proteínas de Bactérias/metabolismo , Estabilidade Enzimática , Glucosiltransferases/metabolismo , Temperatura Alta , Cinética , Peso Molecular , Microbiologia do Solo , Amido/metabolismo , Especificidade por Substrato , gama-Ciclodextrinas/metabolismo
18.
Microbiology (Reading) ; 166(9): 800-816, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32744496

RESUMO

The genus Geobacillus, belonging to the phylum Firmicutes, is one of the most important genera and comprises thermophilic bacteria. The genus Geobacillus was erected with the taxonomic reclassification of various Bacillus species. Taxonomic studies of Geobacillus remain in progress. However, there is no comprehensive review of the characteristic features, taxonomic status and study of various applications of this interesting genus. The main aim of this review is to give a comprehensive account of the genus Geobacillus. At present the genus acomprises 25 taxa, 14 validly published (with correct name), nine validly published (with synonyms) and two not validly published species. We describe only validly published species of the genera Geobacillus and Parageobacillus. Vegetative cells of Geobacillus species are Gram-strain-positive or -variable, rod-shaped, motile, endospore-forming, aerobic or facultatively anaerobic, obligately thermophilic and chemo-organotrophic. Growth occurs in the pH range 6.08.5 and a temperature of 37-75 °C. The major cellular fatty acids are iso-C15:o, iso-C16:0 and iso-C17:o. The main menaquinone type is MK-7. The G-+C content of the DNA ranges between 48.2 and 58 mol%. The genus Geobacillus is widely distributed in nature, being mostly found in many extreme locations such as hot springs, hydrothermal vents, marine trenches, hay composts, etc. Geobacillus species have been widely exploited in various industrial and biotechnological applications, and thus are promising candidates for further studies in the future.


Assuntos
Bacillaceae/classificação , Bacillaceae/fisiologia , Geobacillus/classificação , Geobacillus/fisiologia , Bacillaceae/enzimologia , Bacillaceae/genética , Biodegradação Ambiental , Biocombustíveis , Evolução Biológica , Biotecnologia , Sistemas CRISPR-Cas , Ambientes Extremos , Geobacillus/enzimologia , Geobacillus/genética , Microbiologia Industrial , Filogenia , Temperatura
19.
Int J Biol Macromol ; 161: 1456-1469, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32777411

RESUMO

A new serine alkaline protease (designated as SAPGB) from Gracilibacillus boraciitolerans strain LO15, was produced (9000 U/mL), purified, and characterized. SAPGB has a monomer structure with a precise molecular weight of 30,285.03 kDa as learnt from matrix-assisted laser desorption/ionization-time of flight/mass spectroscopy (MALDI-TOF/MS) exploration. The NH2-terminal amino-acid succession revealed significant identity with Bacillus proteases. The SAPGB was irreversibly inhibited by diiodopropyl fluorophosphates (DFP) and phenylmethylsulfonyl fluoride (PMSF). The enzyme displayed optimum activity at 65 °C and pH 10. The maximal activity was achieved in the range 0.5-5 M NaCl and about 52% of the activity was preserved across the broad salinity range of 0-30%. SAPGB exhibited a considerable catalytic efficiency (ratio kcat/Km) and degree of hydrolysis (DH). In addition, SAPGB showed a high tolerance to several organic solvents and an excellent detergent compatibility than SAPV, SAPA, Thermolysin type X, and Esperase 8.0 L. These properties make SAPGB a potential candidate for detergent formulations. On the other hand, sapGB gene was cloned and expressed in E. coli BL21(DE3)pLysS and the biochemical properties of the purified extracellular recombinant protease (rSAPGB) were similar to those of SAPGB. Finally, a 3D structural model of SAPGB was constructed by homology modeling.


Assuntos
Bacillaceae/enzimologia , Proteínas de Bactérias/química , Endopeptidases/química , Modelos Moleculares , Conformação Proteica , Serina Proteases/química , Sequência de Aminoácidos , Bacillaceae/genética , Proteínas de Bactérias/genética , Sequência de Bases , Fenômenos Químicos , Endopeptidases/genética , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Cinética , Peso Molecular , Serina Proteases/genética , Solventes , Especificidade por Substrato , Temperatura
20.
Biosci Biotechnol Biochem ; 84(11): 2293-2302, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32741269

RESUMO

High collagenolytic activity has been detected in pathogenic bacteria. Collagenase plays an essential role in the invasion step in animals and humans. In this study, we characterized collagenase found in the nonpathogenic bacterium Lysinibacillus sphaericus VN3, which was isolated from soil in Vietnam. The collagenase activity of the purified enzyme was strongly inhibited by Cu2+, but it was significantly increased by Zn2+. The purified enzyme with a molecular mass of approximately 110 kDa exhibited collagenolytic, gelatinolytic, and caseinolytic activity. The kinetic studies showed that this enzyme had greater hydrolyzing activity toward collagen and gelatin compared with casein. Based on the ratio V max/K m, collagen is likely to be the best substrate among three proteins. We found that this collagenase could digest small pieces of bovine skin and tendon into a collagen solution. Interestingly, at pH 6.0-8.0, the soluble collagen could form a collagen membrane, which is useful as a wound-healing biomaterial.


Assuntos
Bacillaceae/enzimologia , Colagenases/metabolismo , Hidrólise , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...